INSTRUCTIONS

WIND SYSTEM CALIBRATION

RECOMMENDED CALIBRATION INTERVAL,
PROCEDURE, AND TEST EQUIPMENT

MODEL 18860-90

INCLUDES INSTRUCTIONS FOR THE FOLLOWING

MODEL 18802/18811 ANEMOMETER DRIVE
MODEL 18112/18212 VANE ANGLE FIXTURE
MODEL 18310/18312 TORQUE DISC
MODEL 18331 VANE TORQUE GAUGE
RECOMMENDED CALIBRATION INTERVAL

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operational Accuracy</th>
<th>Research Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WS ± 0.5 m/s WD ± 5°</td>
<td>WS ± 0.3 m/s WD ± 3°</td>
</tr>
</tbody>
</table>

- TOWER CHECK: 6 months 3 months
- TRAILER CHECK: 12 months 6 months
- LABORATORY CHECK: 24 months 12 months
- MANUFACTURER CHECK: N/A 24 months

OPERATIONAL ACCURACY
Manufacturer's standard calibration is within operational accuracy limits. Perform tower check at initial installation. Tower check and trailer check intervals are recommended minimums for optimum performance.

RESEARCH ACCURACY
Sensor requires wind tunnel calibration by manufacturer, or other recognized calibration laboratory, prior to initial installation. Tower check and trailer check intervals are recommended minimums. Perform tower check at initial installation.

OUTPUT SIGNAL MEASUREMENTS

Wind speed signals vary among sensors. The signals may be frequency related for magnet/coil and photochopper transducers or voltage related for tachometer generator transducers. Wind direction signals from potentiometer transducers are voltage related and are dependent upon stable excitation voltage. To monitor wind speed and direction signals, use a suitable indicator. It may be a frequency meter, voltmeter, calibrated wind indicator, data logger with display, or some combination of these instruments. As a general rule the resolution of the indicator should be equal to the smallest unit being measured and the accuracy of the indicator should be 5 to 10 times better than that required by the calibration. If necessary quantify and account for any additional error introduced by the indicating device.

WIND SPEED SENSOR TYPES

The following procedures refer to a propeller type wind speed sensor, however they are equally applicable to a cup wheel type sensor. To check wind speed threshold of a cup wheel anemometer using the torque disc, hold or mount the sensor with the cup wheel shaft horizontal.
TOWER CHECK

Perform tower check for each initial installation regardless of prior calibration interval.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed Threshold:</td>
<td>In calm weather blow gently on propeller. Watch for obvious high torque or irregular rotation.</td>
</tr>
<tr>
<td>Wind Speed Signal:</td>
<td>Remove propeller or cupwheel. Drive shaft at known rpm, representing mid range of sensor. Compare output signal to established calibration.</td>
</tr>
<tr>
<td>Wind Direction Threshold:</td>
<td>In calm weather blow gently on vane. Watch for obvious high torque or irregular motion.</td>
</tr>
<tr>
<td>Wind Direction Signal:</td>
<td>Visually align vane with known reference. Compare output signal. Align vane with additional reference points or cardinal points marked on housing. Compare output signal to established calibration.</td>
</tr>
</tbody>
</table>

TRAILER CHECK

Sensors are removed from tower and connected to signal conditioning modules with sensor cable patch cords.

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed Threshold:</td>
<td>Remove propeller. Set torque disc for proper torque according to table and curves supplied. Install torque disc on propeller shaft and check rotation of disc. See instructions on torque disc drawing.</td>
</tr>
<tr>
<td>Wind Speed Signal:</td>
<td>Remove propeller. Drive shaft at 200 rpm. Check output for measurable signal. Drive shaft at rpm representing mid range of sensor. Compare output signal to established calibration.</td>
</tr>
<tr>
<td>Wind Direction Threshold:</td>
<td>Hold or mount sensor on desk top with fin horizontal to check vane balance. Adjust if required. After balancing vane assembly, mount sensor on bench stand on level surface. Determine proper torque according to table and curves supplied. Place torque gauge on vane housing and apply steady force to end of leaf spring. Record maximum torque value for both CW and CCW rotation. See instructions on torque gauge drawing.</td>
</tr>
<tr>
<td>Wind Direction Signal:</td>
<td>Mount sensor on Bench Stand. Rotate fixture through 360 degrees comparing output signal at 30 degree intervals.</td>
</tr>
</tbody>
</table>
LABORATORY CHECK

Sensors and signal conditioning modules are removed from field site to calibration lab equipped with calibration fixtures and test equipment and operated by a qualified instrument technician.

PROCEDURE

<table>
<thead>
<tr>
<th>Wind Speed Threshold:</th>
<th>Remove propeller. Set torque disc for proper torque according to table and curves supplied. Install torque disc on propeller shaft and check rotation. See instructions on torque disc drawing.</th>
<th>Propeller Torque Disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed Signal:</td>
<td>Drive propeller shaft at 200 rpm, observe output on oscilloscope for minimum signal level and proper form. Drive propeller shaft at a minimum of three other rpm values throughout the working range of the propeller, checking output signal at each speed. Compare to established calibration.</td>
<td>Oscilloscope Anemometer Drive</td>
</tr>
<tr>
<td>Wind Direction Threshold:</td>
<td>Check vane balance and adjust if required. After balancing vane assembly, mount sensor on bench stand on level surface. Determine proper torque according to table and curves supplied. Place torque gauge on vane housing and apply steady force to end of leaf spring. Record maximum torque value for both CW and CCW rotation. See instructions on torque gauge drawing.</td>
<td>Vane Torque Gauge Vane Angle Bench Stand</td>
</tr>
<tr>
<td>Wind Direction Signal:</td>
<td>Install sensor on vane angle fixture. Check output signal at 30° intervals with additional checks at 340°, 350°, and 355°.</td>
<td>Vane Angle Fixture</td>
</tr>
</tbody>
</table>

EQUIPMENT

MANUFACTURER CHECK

Return sensors to manufacturer or other recognized calibration lab. These tests are performed at manufacturer's facilities or calibration lab facilities on a fee basis.

PROCEDURE

<table>
<thead>
<tr>
<th>Wind Speed Threshold:</th>
<th>Check and adjust propeller balance. Install sensor on threshold fixture. Measure and record starting and stopping wind speed values.</th>
<th>Threshold fixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed Signal:</td>
<td>Install sensor in wind tunnel. Measure and record output signal at 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, and 25 and 30 m/s. Tabulate wind tunnel speed vs. sensor output. Calculate and record slope and intercept.</td>
<td>Wind tunnel facility</td>
</tr>
<tr>
<td>Wind Direction Threshold:</td>
<td>Measure vane torque and record equivalent threshold wind speed.</td>
<td>Vane torque fixture</td>
</tr>
<tr>
<td>Wind Direction Signal:</td>
<td>Install sensor on master vane angle fixture. Measure and record output signal through complete 360° rotation. Measure and record electrical function angle.</td>
<td>Master vane angle fixture</td>
</tr>
</tbody>
</table>
MODEL 18802/18811

SELECTABLE SPEED

ANEMOMETER DRIVE

SPECIFICATIONS

- **Operating Range:**
 - 200 - 15,000 RPM (18802)
 - 20.0 - 990.0 RPM (18811)
- **Resolution:**
 - 1 RPM (18802)
 - 0.1 RPM (18811)
- **Power Requirement:** 12 to 30 VDC (2W nominal, 6W max)
- **Battery Power:** Two 9-V

INTRODUCTION

The YOUNG Selectable Speed Anemometer Drive provides a convenient and accurate way to rotate an anemometer shaft at a known rate. The device consists of a control/display unit and a variable speed motor with integral high-resolution optical encoder.

Two models are available: Model 18802 has an operating range of 200 to 15,000 RPM for use with propeller type anemometers. Model 18811 has a lower RPM range for use with cup type anemometers. The control unit is the same in each case. High and low speed motors are available separately, permitting operation in both speed ranges with a single display unit.

The control unit automatically senses motor assembly type (high or low speed) and adjusts display and controlling circuits automatically. Operating parameters for each motor type include MAX & MIN RPM, STEP SIZE, and 9 PRESET speeds. Settings for these parameters are saved when power is off.

A front panel CW-CCW switch selects rotation direction (as seen facing anemometer). Motor speed is selected using the UP-DOWN keys. The display shows the target and actual RPM. Motor rotation and measurement are referenced to a crystal oscillator for stability and accuracy. Current limiting circuits protect the motor from damage due to overload or stalling.

The 18802 is powered from an AC wall adapter (included). For completely portable operation, two internal 9-V batteries power the unit. Use lithium type for longest life. When batteries are low, the controller stops the motor and alerts the user on the display.

OPERATION

For proper operation, the coupling on the motor must be carefully aligned with the anemometer shaft. Misalignment, particularly at low RPM rates, causes instability and stalling.

Alignment fixtures included with the device allow the motor to be attached directly to YOUNG anemometers. Attach the alignment fixture to the sensor as follows:

1) Remove propeller or cup-wheel from anemometer shaft and attach coupling disc to shaft.
2) Mount clamp and bar fixture on sensor and gently tighten clamp. **Do not overtighten!**
3) Attach motor to fixture. Carefully align anemometer and motor coupling and gently tighten motor clamp. **DO NOT OVERTIGHTEN.**
4) Turn unit ON and use the UP-DOWN keys to set target RPM.
5) Within several seconds display should show actual RPM within ± 1 RPM of target setting. If not, carefully adjust alignment until display shows proper value. This can be performed while motor is running.

If the calibrating unit is used with an anemometer which does not fit the alignment fixture, the motor may be held in place by hand. Good results can be achieved if the motor and anemometer shafts are well aligned.

MENU

Access the Setup Menu by pressing and holding the MENU key for about five seconds. The motor will stop and the Setup Menu will appear on the display. Each menu item and its function is listed below.

Use the UP-DOWN keys to scroll between items on the menu list. To EDIT a value, press the MENU key then use the UP-DOWN keys to change it. When you are finished editing, press MENU again. To return to OPERATE mode, repeatedly press the UP key until OPERATE appears on the display then press MENU.

The 18802 stores the new settings and within several seconds will begin operating at its lowest speed. **You MUST return to OPERATE mode to retain new settings.**

<table>
<thead>
<tr>
<th>MENU ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATE</td>
<td>Press MENU to return to OPERATE mode. You MUST return to OPERATE mode to retain new settings.</td>
</tr>
<tr>
<td>MAX RPM</td>
<td>Maximum RPM allowed during operation. Once the maximum is reached, pressing the UP key has no effect. Limited to operating range of motor.</td>
</tr>
<tr>
<td>MIN RPM</td>
<td>Minimum RPM allowed during operation. Once the minimum is reached, pressing the DOWN key has no effect. Limited to operating range of motor.</td>
</tr>
<tr>
<td>STEP SIZE</td>
<td>The number of RPM added or subtracted when the UP-DOWN keys are pressed to change target RPM during operation.</td>
</tr>
<tr>
<td>PRESET</td>
<td>YES/NO determines whether preset RPM settings are used. If YES, pressing the UP-DOWN keys selects preset speeds 1 through 9. If NO, UP-DOWN changes speed by STEP SIZE increments.</td>
</tr>
<tr>
<td>PRESET1-9</td>
<td>Preset RPM values. Each PRESET may be set to any value in operating range of motor.</td>
</tr>
</tbody>
</table>
WARRANTY

This product is warranted to be free of defects in materials and construction for a period of 12 months from date of initial purchase. Liability is limited to repair or replacement of defective item. A copy of the warranty policy may be obtained from R. M. Young Company.

CE COMPLIANCE

This product has been tested and shown to comply with European CE requirements for the EMC Directive.

Declaration of Conformity

R. M. Young Company
2801 Aero Park Drive
Traverse City, MI 49686 USA

Model 18802 ANEMOMETER DRIVE

The undersigned hereby declares on behalf of R. M. Young Company that the above-referenced product, to which this declaration relates, is in conformity with the provisions of:

David Poinsett
R&D Manager
18802 ANEMOMETER DRIVE (200 TO 15,000 RPM)
18811 ANEMOMETER DRIVE (20 TO 990 RPM)

MODEL 18802/18811
ANEMOMETER DRIVE
200–15,000 / 20–990 RPM

R.M. YOUNG CO. TRAVERSE CITY, MI 49686 U.S.A. 231–946–3980

Page 7
ANEMOMETER TORQUE DISC

1.0 gm AT 2 cm RADIUS = 2.0 gm-cm
0.1 gm AT 5 cm RADIUS = 0.5 gm-cm
TOTAL TORQUE = 2.5 gm-cm

THIS IS MAXIMUM TORQUE FOR 1.0 M/S THRESHOLD FOR MODEL 05103

DISC SHOULD ROTATE DOWNWARD WHEN RELEASED. CHECK BOTH CW AND CCW ROTATION.

0.250" DIA. HOLE TO FIT PROPELLER SHAFT OR CUP WHEEL SHAFT

6–32 THREAD
10 HOLES / 1cm SPACING

WEIGHTS:
BLACK NYLON SCREW
6–32 x 1/4" PAN HEAD
0.1 gm

STAINLESS STEEL SCREW
6–32 x 1/2" PAN HEAD
1.0 gm

COMBINE WEIGHTS AT DIFFERENT RADIi TO TOTAL DESIRED TORQUE.

SELECT TORQUE VALUE FOR TYPE OF INSTRUMENT TO BE CHECKED AND DESIRED MAXIMUM THRESHOLD FROM TABLE. ADD WEIGHTS TO TORQUE DISC TO EQUAL THIS TORQUE VALUE. REMOVE PROPELLER, OR CUP WHEEL, FROM ANEMOMETER AND INSTALL TORQUE DISC WITH WEIGHTS IN HORIZONTAL POSITION. DISC SHOULD ROTATE DOWNWARD WHEN RELEASED. FREE ROTATION INDICATES GOOD BEARING/TRANSUCER CONDITION. FAILURE TO ROTATE INDICATES NEED FOR SERVICE.

ANEMOMETER TORQUE DISC
DWG B PRO 06/94
MODEL 18310 PROPELLE TORQUE DISC DWN KL DWN 06/96
MODEL 18312 CUP WHEEL TORQUE DISC CHK M/83102B
R.M. YOUNG CO. TRAVERSE CITY, MI 49686 U.S.A. 231-946-3980
TYPICAL TORQUE VALUES
For Checking Anemometer Bearing and Transducer Condition

<table>
<thead>
<tr>
<th>Instrument (Standard Models)</th>
<th>Sensor</th>
<th>Transducer</th>
<th>(^1)New Instrument</th>
<th>(^2)Max torque for threshold of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Torque gm-cm</td>
<td>Threshold m/s</td>
</tr>
<tr>
<td>03101-5 Wind Sentry Anemometer</td>
<td>03110</td>
<td>AC Coil</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>05103 Wind Monitor</td>
<td>08234</td>
<td>AC Coil</td>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>05106 Wind Monitor - MA</td>
<td>08234</td>
<td>AC Coil</td>
<td>2.9</td>
<td>1.1</td>
</tr>
<tr>
<td>05305 Wind Monitor - AQ</td>
<td>08254</td>
<td>AC Coil</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>05701 Wind Monitor - RE</td>
<td>08274</td>
<td>AC Coil</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>09101 Wind Monitor - SE</td>
<td>08234</td>
<td>AC Coil</td>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>09305 Wind Monitor - AQ - SE</td>
<td>08254</td>
<td>AC Coil</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>12102 Cup Anemometer</td>
<td>12170C</td>
<td>2400 mV Tach-Gen</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>12102D Cup Anemometer</td>
<td>12170C</td>
<td>Photo Chopper</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>27106 Propeller Anemometer</td>
<td>08274</td>
<td>500 mV Tach-Gen</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>27106T Propeller Anemometer</td>
<td>08254</td>
<td>500 mV Tach-Gen</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>08274</td>
<td>Photo Chopper</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

NOTES:
1. New instrument torque and threshold specifications are maximum values
2. Values shown are maximum torque to maintain instrument threshold at or below 0.5 m/s and 1.0 m/s respectively.
3. EPA and NRC instrument specifications designate 0.5 m/s wind speed starting threshold. ASTM D5096-90 "Standard Test Method for Determining the Performance of a Cup Anemometer or Propeller Anemometer" defines "starting threshold" and outlines a method for its determination.

SENSORS:
- 03110 Wind Sentry 75 cm Cup Wheel Assembly
- 08234 18 X 30 cm Polypropylene Propeller (PP)
- 08254 20 X 30 cm Carbon Fiber Thermoplastic Propeller (CFT)
- 08274 22 X 30 cm Expanded Polystyrene Propeller (EPS)
- 12170C 100 cm Cup Wheel Assembly

STANDARD BEARINGS:
Model 05103 Wind Monitor / 09101 Wind Monitor-SE : Double Teflon seals & lubricated with M-28 low torque grease
Model 05106 Wind Monitor - MA : Double Teflon seals & lubricated with "Sta-lube" waterproof grease.
All other models : Double metal shields & lubricated with LOI instrument oil

18860-90
APPROXIMATE
PROPELLER/CUPWHEEL TORQUE
VS. WIND SPEED
NEAR THRESHOLD/NON-ROTATING

\[T = ku^2 \quad U = \sqrt{\frac{T}{k}} \]

\[T = \text{TORQUE gm-cm} \]
\[U = \text{WIND SPEED meters/second} \]
\[k = \text{CONSTANT} \]

- No. 08274 22 x 30 cm \(\frac{k}{5.0} \)
 PROPELLER - GRAY EPS

- No. 08254 20 x 30 cm \(\frac{k}{3.8} \)
 PROPELLER - GRAY CFT

- No. 08234 18 x 30 cm \(\frac{k}{2.4} \)
 PROPELLER - BLACK PP

- No. 12170C 100cm \(\frac{k}{1.4} \)
 CUPWHEEL - BLACK PP

- No. 03110 WIND SENTRY \(\frac{k}{1.0} \)
 CUPWHEEL

\[\text{PROPELLER/CUPWHEEL TORQUE CHART} \]
\[\text{DWG B} \quad \text{PRO 03/89} \]
\[\text{PROPELLER #: 08234, 08254, 08274} \quad \text{DWN KL} \quad \text{DWN 07/96} \]
\[\text{CUPWHEEL #: 03110, 12170C} \quad \text{CHK} \quad \text{05/93/93} \]

R.M. YOUNG CO. TRAVERSE CITY, MI 49686 U.S.A. 231-946-3980
R. M. YOUNG COMPANY

TYPICAL TORQUE VALUES
For Checking Anemometer Bearing and Transducer Condition

<table>
<thead>
<tr>
<th>Instrument (Standard Models)</th>
<th>^1New Instrument</th>
<th>^2,3Max torque for threshold of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Torque gm-cm</td>
<td>Threshold m/s @ 10°</td>
</tr>
<tr>
<td>05103 Wind Monitor</td>
<td>30</td>
<td>1.1</td>
</tr>
<tr>
<td>05106 Wind Monitor - MA</td>
<td>30</td>
<td>1.1</td>
</tr>
<tr>
<td>05305 Wind Monitor - AQ</td>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>05701 Wind Monitor - RE</td>
<td>7</td>
<td>0.4</td>
</tr>
<tr>
<td>09101 Wind Monitor - SE</td>
<td>30</td>
<td>1.1</td>
</tr>
<tr>
<td>09305 Wind Monitor - AQ - SE</td>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>12302/5 Microvane</td>
<td>11</td>
<td>0.4</td>
</tr>
</tbody>
</table>

NOTES:
1. New instrument torque and threshold specifications are maximum values
2. Values shown are maximum torque permitted to maintain instrument threshold at or below 0.5 m/s and 1.0 m/s respectively at 10° displacement.

STANDARD BEARINGS:

Models 05103 Wind Monitor / 05106 Wind Monitor-MA / 09101 Wind Monitor-SE:
Double Teflon seals lubricated with LY-48 wide temperature range grease

Models 05305 Wind Monitor-AQ / 05701 Wind Monitor-RE / 09305 Wind Monitor-AQ-SE:
Double metal shields lubricated with LOI instrument oil

All other models - Double Teflon seals lubricated with LOI instrument oil

18860-90
APPROXIMATE
VANE TORQUE AT 5° OFFSET
vs. WIND SPEED

VANE OFFSET 5° FROM TRUE WIND DIRECTION

\[T = kU^2 \quad U = \sqrt{\frac{T}{k}} \]

\[T = \text{TORQUE (gm·cm)} \]
\[k = \text{CONSTANT} \]
\[U = \text{WIND SPEED (meters/second)} \]

MODELS TESTED

<table>
<thead>
<tr>
<th>MODEL</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELS 12302/12305 MICROVANE</td>
<td>26</td>
</tr>
<tr>
<td>MODEL 05305 WIND MONITOR—AQ</td>
<td>17</td>
</tr>
<tr>
<td>MODEL 05701 WIND MONITOR—RE</td>
<td></td>
</tr>
<tr>
<td>MODEL 09305 WIND MONITOR—AQ—SE</td>
<td></td>
</tr>
<tr>
<td>MODEL 05103 WIND MONITOR</td>
<td>11</td>
</tr>
<tr>
<td>MODEL 05106 WIND MONITOR—MA</td>
<td></td>
</tr>
<tr>
<td>MODEL 09101 WIND MONITOR—SE</td>
<td></td>
</tr>
</tbody>
</table>

CHART: VANE TORQUE AT 5° OFFSET DWG B PRD 03/89
MODELS: 05103, 05105, 05305, 05701 DWG KL PRD 02/03
MODELS: 09101, 09305, 12302/12305 CHK C 02/05
R.M. YOUNG CO. TRAVERSE CITY, MI 49686 U.S.A. 231–946–3980
APPROXIMATE VANE TORQUE AT 10° OFFSET vs. WIND SPEED

VANE OFFSET 10° FROM TRUE WIND DIRECTION

\[T = k u^2 \]
\[U = \sqrt{T/k} \]

- \(T = \) TORQUE (gm-cm)
- \(k = \) CONSTANT
- \(U = \) WIND SPEED (meters/second)

MODELS 12302/12305 MICROVANE

- MODEL 05305 WIND MONITOR—AQ
- MODEL 05701 WIND MONITOR—RE
- MODEL 09305 WIND MONITOR—AQ—SE

MODELS 05103, 05106, 05305, 05/701

- MODEL 05103 WIND MONITOR
- MODEL 05106 WIND MONITOR—MA
- MODEL 09101 WIND MONITOR—SE

CHART: VANE TORQUE AT 10° OFFSET

- **DWG**: DWN KL
- **PRD**: 02/03
- **MODELS**: 05103, 05106, 05305, 05/701
- **COMPANY**: R.M. YOUNG CO. TRAVERSE CITY, MI 49686 U.S.A. 231-946-3980
NOTE: AFTER REMOVAL OF THE WIND MONITOR THE TOWER MOUNT VANE ANGLE FIXTURE IS INSTALLED WITH THE SOUTH ALIGNMENT NOTCH ENGAGING THE INDEX KEY ON THE ORIENTATION RING. THE WIND MONITOR IS THEN REINSTALLED ON THE VANE ANGLE FIXTURE WITH ITS SOUTH ALIGNMENT NOTCH ENGAGING THE INDEX KEY ON THE FIXTURE. AFTER CHECKING VANE OUTPUT AGAINST AZIMUTH ANGLE THE FIXTURE IS REMOVED AND THE WIND MONITOR REINSTALLED ENGAGING THE INDEX KEY ON THE ORIENTATION RING. THUS THE ORIGINAL DIRECTION REFERENCE IS NOT DISTURBED.