Towards Implementing the Operational Use of HFR Wave and Wind Extraction

Colin Evans1,2,3* (colin.evans@upr.edu), Miguel Canals1,2,3* (miguelf.canals@upr.edu)1*Caribbean Coastal Ocean Observing System, University of Puerto Rico at Mayaguez2*UPRM Center for Applied Ocean Science Engineering, Department of Engineering Science and Materials3*Department of Marine Sciences, University of Puerto Rico at Mayaguez

High frequency radar (HFR) provides the unique ability to extract wave information from the secondary energy return on a spatial scale specific to the operating frequency. The unique, heterogeneous wave climate associated with the Puerto Rico coastline offers motivation for future operational use of HFR-derived significant wave height.

HFR Spectrum and Wave Derivation

Release 8 Software

Before Hurricane Maria made landfall, CODAR's Release 8 software was installed on HFR site MABO. The upgrade implements an "outlier" algorithm and computes the mean H_s from all range cells. Preliminary comparisons with buoy point-measurements are above.

HFR – Wind Measurements

Depending on the radar transmit frequency, wave periods below $L/2$ cannot be resolved (top right). However, a huge advantage of these systems is the ability to provide wave measurements on a spatial scale.

HFR – Waverider Comparisons